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PERIODIC SOLUTIONS TO A LIMITED PROBLEM OF THREE BODIES,

INCLUDING A LARGE NUMBER OF REVOLUTIONS AROUND

A SMALL BODY

I. V. Kurcheyeva

To construct periodic solutions in a limited problem of three /168

bodies, the method of the small Poincare .,parameter is widely used.

In a system of differential equations, terms are dropped which

contain the small parameter. Given a new system which is called

generative, that admits periodic solutions. In executing several

conditions, one and only one periodic solution of the primary

system will satisfy the periodic solution of the generative sys-

tem. In striving to zero of the small parameter, the periodic

solution approaches the generative.

There are several methods for constructing different genera-

tive systems in a limited problem of three bodies.

1. Terms are discarded which depend on the perturbing mass;

consequently we derive a problem of two bodies (this method is

for deriving periodic solution of a limited problem of three

bodies and was first employed by Poincare [1], then Schwarzshild

[,2], Batrakov [3-4], Arenstorf [5-81 and many others).

2. The mean motion n is taken as the small parameter. The

generative system will be a problem of two stationary centers (cf.

Demin [9], Arenstorf [6]).

3. The small par eter is introduced artificially by trans-

formation of coordinates and time (cf. Aksinov [10]).

4. The averaged problem of three bodies is taken as the
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generative system (the method introduced by Merman for the aver-

aged Fatu problem [12]).

In this article, the averaged Gaussian problem is taken as

the generative system.

As we know, a plane limited circular problem of three bodies/169

studies the motion of point P of infinitely small mass under the

effect of Newtonian gravitation of two material points E and M,

rotating around their common center of gravity in circular orbits.

The units of time, mass and distance are selected so that the

mass of bodies E and M would be equated respectively to 1 - y,

p and their reciprocal distances, angular velocity, gravitational

constant would be equated to one.

Then, in a polar system of coordinates (body M of lesser

mass is taken as the center) the equations of motion of point P

will be written in the form

r = rf 2 + W;,

d . (1)

where W is the force function describable by formula

w= +(1)( 2rcos -rcosO (2)

where e is the difference in longitudes of 4E' #,of point E and

P respectively, which is equal to

Since the average motion nE of point E is equal to one, then

E = t, and

(3)



System (1) has a unique integral (Jacobi integral) which we

can write in final form

r r+r 2 (-1)2=2 IW+ r + 2h. (4)

In Keplerian phase space (a, p, M,w), equations (1) have the

form

da -2/ Y R

dp V DOR

dM - 2/a OR
d - a3 2  V da '

d 2/ dR ' (5)

Here R is the perturbation function which, in a polar system of

coordinates, has the form

R=(I-- fIl+r) r2iF2rcosO -rcos . ' (6)

By the Keplerian phase coordinates R we can express, with

the aid of formulas

r=a 1- J - jcosE,

E - / sin E= M. (7)

-a
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To eliminate the possible collision of planetoid: P and /170

body E, let us introduce the condition

a(I P j/ <i. (8)

Inequality (8) denotes that body P, in all its time of motion, does

not go beyond the orbit of body E.

Then function R can be expanded into a Fourier series:

R= Cq,, r(a, P)cos(qM+rw),
q=0r=-o (9)

where w =w ~ t, and Cq,r are defined functions of a, p. Let

us assume that

R=Ri (a, p)+R 2 (a, p,M, ).](
(10)

This presentation is always possible, since R is a periodic func-

tion of M and t with a period of 2T, 27 and for R1 we can take

a twice averaged function of R:

r2 21c

Ri=Co (a, p) S S RdMdt. (11)

In this case, function R2 will possess the following property:

in terms of any a priori given small E > 0 we will always find

such a small 6-neighborhood of body M (r < 6) in which the in-

equality 1R21 < c will be fulfilled. This follows from the con-

tinuity of function R2 and the fact that R2 (0, 0, M, W) = 0.

In the small 6-neighborhood of body M, the function can be

written as

4 R2=oR, (12)



R
where a is a small parameter, and R2 

= - I =  .

We will seek a solution of system (5) which lies totally

in the small 6-neighborhood of point M. In this case, we can

apply to system (5) the method of the Poincare small parameter.

Where 6= 0, i O0, system (5) will appear as:

da
dt- = 0

dp -- 0,

dM 1/ 2 Ya d(1
dt 3/12  a (13)

do 2 V DR1

We have a twiced averaged Gaussian problem, integrating

which yields
a=ao,

P=Po,
M=nlt+Mo,

D= n2 t+Oo,. (14)

where /171

n / 2 Y-a aOI

a 3/2 da

OR 1  - (15)
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Equations (14) are the motion along the ellipses with focus
at point M. The semiaxis and parameter are invariable, and the

apsidal lines rotate with constant angular velocity, dependent
only on a and p. The law of dependence of M on time remains as
in unperturbed motion linear, but with a variable coefficient of
proportionality. The trjaectory of motion relative the station-

ary axes will be periplegmatic trajectory, spinning between two
circles, first touching one, then the other. The centers of the
circles are located at point M, and the radii are equal, respec-

tively, to

II

If constants a0P 0 satisfy the condition

(2-1) T= 2k=, (16)

where kl, k2 are whole integers, then solution of (14) can be
considered.periodic, of period T.

Let us investigate only such constants a0, p0 for which are

,fulfilled the inequality

a (1+ * <i (17)

Under such condiions, periodic solutions of the system of

differential equatQns (13) will lie wholly wtihin the S-neigh-

borhood of point M.

According to Poincare's method, the periodic solution of
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system (5), close to (14), and having the same period, will be

written as

a=ao+Pi+E1,

P=0'poi+2 2,
=nlt+n + I,

nt+ 2 (18)

i' ri are new unknownyperiodic functions of period Ts

e (0)=O, i (0)=O. (19)

To define the small quantities i, yi' let us write the

equations

M(O)~, (O)=0,

-M 2P1i P21 1, 72, ) 7tkl,

0) -P 72, a) P (20)

These conditions signify that the curve described by equa- /172

tions (18) becomes symmetrical relative to the axis connecting

both bodies E and M and is closed.

The conditions of periodicity of (20) are taken instead of

the classic condition of rotation of a point in an initial state

.through a time interval T > 0, which leads to the expressed case.

Substituting (18) in (5), let us define n1 and n2 to within

terms of the first power a, 8i , Yi:

(T / dnl Onl T
2' +-O\ ' .2 . (21)

Son, + P + . 7
-12 - - o - -. .. ...



Let us rewrite (20), using (18) and .(21):

7r=0, 72=0,

(n2. +d -Ons OnI+ . .T =2k 2

-ao B-o 2-,/ (22)

nl, n2 are linearly independent functions, because

[Oao dPop 0

On1 On1

Oao Op,)

And consequently, there is always an infinite set a0 , p0 whose

determinant D is not equal to zero. Equations (22) are solvable

solely with respect to l' 2 in the form of holomorphous functions

with respect to a.

Consequently, for small a > 0, there exist periodic solu-

tions which are symmetrical relative to the axis connecting bodies

E and M which, when a= 0, are in conformity with periodic solu-

tions of (14), (16) of the generative system.
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